989 research outputs found

    Quantum Analogy of Poisson Geometry, Related Dendriform Algebras and Rota-Baxter Operators

    Full text link
    We will introduce an associative (or quantum) version of Poisson structure tensors. This object is defined as an operator satisfying a "generalized" Rota-Baxter identity of weight zero. Such operators are called generalized Rota-Baxter operators. We will show that generalized Rota-Baxter operators are characterized by a cocycle condition so that Poisson structures are so. By analogy with twisted Poisson structures, we propose a new operator "twisted Rota-Baxter operators" which is a natural generalization of generalized Rota-Baxter operators. It is known that classical Rota-Baxter operators are closely related with dendriform algebras. We will show that twisted Rota-Baxter operators induce NS-algebras which is a twisted version of dendriform algebra. The twisted Poisson condition is considered as a Maurer-Cartan equation up to homotopy. We will show the twisted Rota-Baxter condition also is so. And we will study a Poisson-geometric reason, how the twisted Rota-Baxter condition arises.Comment: 18 pages. Final versio

    Rota-Baxter algebras and new combinatorial identities

    Full text link
    The word problem for an arbitrary associative Rota-Baxter algebra is solved. This leads to a noncommutative generalization of the classical Spitzer identities. Links to other combinatorial aspects, particularly of interest in physics, are indicated.Comment: 8 pages, improved versio

    Time-ordering and a generalized Magnus expansion

    Get PDF
    Both the classical time-ordering and the Magnus expansion are well-known in the context of linear initial value problems. Motivated by the noncommutativity between time-ordering and time derivation, and related problems raised recently in statistical physics, we introduce a generalization of the Magnus expansion. Whereas the classical expansion computes the logarithm of the evolution operator of a linear differential equation, our generalization addresses the same problem, including however directly a non-trivial initial condition. As a by-product we recover a variant of the time ordering operation, known as T*-ordering. Eventually, placing our results in the general context of Rota-Baxter algebras permits us to present them in a more natural algebraic setting. It encompasses, for example, the case where one considers linear difference equations instead of linear differential equations

    Generalized shuffles related to Nijenhuis and TD-algebras

    Full text link
    Shuffle and quasi-shuffle products are well-known in the mathematics literature. They are intimately related to Loday's dendriform algebras, and were extensively used to give explicit constructions of free commutative Rota-Baxter algebras. In the literature there exist at least two other Rota-Baxter type algebras, namely, the Nijenhuis algebra and the so-called TD-algebra. The explicit construction of the free unital commutative Nijenhuis algebra uses a modified quasi-shuffle product, called the right-shift shuffle. We show that another modification of the quasi-shuffle product, the so-called left-shift shuffle, can be used to give an explicit construction of the free unital commutative TD-algebra. We explore some basic properties of TD-operators and show that the free unital commutative Nijenhuis algebra is a TD-algebra. We relate our construction to Loday's unital commutative dendriform trialgebras, including the involutive case. The concept of Rota-Baxter, Nijenhuis and TD-bialgebras is introduced at the end and we show that any commutative bialgebra provides such objects.Comment: 20 pages, typos corrected, accepted for publication in Communications in Algebr

    Mixable Shuffles, Quasi-shuffles and Hopf Algebras

    Full text link
    The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. As an application, we obtain Hopf algebra structures in free Rota-Baxter algebras.Comment: 14 pages, no figure, references update

    Generalized Chaplygin gas as geometrical dark energy

    Full text link
    The generalized Chaplygin gas provides an interesting candidate for the present accelerated expansion of the universe. We explore a geometrical explanation for the generalized Chaplygin gas within the context of brane world theories where matter fields are confined to the brane by means of the action of a confining potential. We obtain the modified Friedmann equations, deceleration parameter and age of the universe in this scenario and show that they are consistent with the present observational data.Comment: 11 pages, 3 figures, to appear in PR

    Renormalization: a quasi-shuffle approach

    Full text link
    In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semi-group (different in nature from the Connes-Marcolli "cosmical Galois group"). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov's preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process

    Productivity in Multi-storey Mass Timber Construction

    Full text link
    • …
    corecore